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SUMMARY 

We consider multi-stage processes Involving both 

zero—sum and non-zero sum games.  Using the con- 

cept of "games of survival" we derive approximate 

solutions for buth classes of multi-stage games 

under various realistic assumptions. 
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$1.     Introductlcn 

In the first paper of this series, [ij , we conslierel ;i maltl- 

stage decision process of simple and yet general type -ind shewed 

that an approximate solution of plausible and Intuitive sort co.^d 

be obtained under certain reasonable assumptions. 

In tnls paper, we shall consider a more difficult ;l:i3S of 

problems, Involving conflict between two groups.  In many situations 

of Importance, one group may be considered to oe the Inanimate 

forces of nature. 

•  Summarised ty the pnrase "the perversity of Inanimate objects". 
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When the two groups are In direct conflict we have the theory 

of zero-Bum games to assist us.  Wnen tne two groups are partly 

apposed and partly not, we encounter the problems of non—zero sum 

games, where there Is essenLlaixy nu tneory to guide us.  Never- 

^neiess, we shall snow that under certain conditions we can once 

again obtain approximate modes of procedure which seem eminently 

reasonable. 

$ 2.     Description of the Multl-^tage Fr cess 

We shall consider a multi-stage {rocess of the following type, 

^hlcn we shall call a "game".  There are two protagonists, whom we 

mail call "flayers", named rather prosaically P anJ Q.  Tne first 

cf these players, P, has a choice of M different plays, which we 

shall designate by the numbers 1,2,...,M, and the second player, Q, 

nas a choice cf N different plays, denoted by 1,2,...,N.  If P chooses 

the 1— of his crulces and Q the J— of his choices, then P receives 

a quantity a., and Q a quantity b.,.  These quantities may be nega- 

tlve, In which case a loss Is sustained. 

We can now consider this situation to repeat Itself f( r a 

Mnlte ^r anbounaed number of stages and pose the problem of deter- 

mining tne )ptlmal mode of play for each player under the assumption 

trat each wishes to maximize his over—all return. 

3%     Zer^-Sur. Gcimea - S^ng^e Stage 

The simplest case, and unfortunately tne .,nly case In which 

a satlalactvry tr.eory exists, Is tnat where b^ . - -a^y   «"hier. Is 
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to aay the piayera are In direct opposition since une'a gain la 

the other's ioas. 

We shall be^ln with the dlscuaalon of the single-stage process. 

It Is clear thai the determination of optimal play la trivial If 

either of the players Is required to move before tne other.  The 

only Interesting case Is that where both players are required to 

move simultaneously. 

In these circumstances they protect themselves by mixing 

their choices.  Les us assume then that P chooses t;.e 1—- play 

with probability x. and Q his J—- choice with probability y.. 

The vector x -   (x,Xa.....x ) specifies P's probability distribu- 

tion, and y ■ (yi,yi,•••#yn) specifies Q's probability distribution. 

The expected return for P will be 

N 
(1) Ep(x,y) -^ a^x^j  , 

and the expected return for Q, EQ(x,y) wlii be tne negative of this, 

(2) EQ(x,y) - -Ep(x,y) 

The first player, P, will choose his probability distribution 

x so as to maximize Ep ana the second player Q will cnoose y so as 

to minimize Ep. 

We  can  then define   two  values 

(3)     V     - Mln  Max  E   (x,y) 
y       x 
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(M    VQ - M^x M^n Ep(x,y) 

In each  case  the  variation  Is  i vrr  trie  regions  defined   by 

M 
(b)   ia)   X^ü,        y   x1  • 1, 

N 
(b) y,>o,   y y, - i 

>i • j 

Tne first value, Vp, Is the exi^ected return to P If Q Is required 

to choose y before P chooses x, and the second Is the expecltd 

return to P If P must choose x bef .re Q chooses y. 

It Is a remarkable fact, tne celebrated mln-max tnecrem or 

Von Neumann, L^J, the basic tnecrem of the theory of games, that 

(6} V - V 

I 
The Interp retatlon of this result Iß that P can announce x In 

advance, and Q likewise, without either gaining from this advance 

knowledge. 

/s.  Zero-Sum Games - Finite Resources 

In many situations, Involving multi-stage play, the above 

moJel Is not satisfactory.  This Is particularly true In multi- 

stage ^roceuses where bv th sloes nave finite resuurces.  Here the 

game aut^matioally terminates when eltner player has no resources. 

Let us assume then that each side now plays to ruin the other. 
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with the game continuing until one or the other player la bank- 

rupt.  Let p repreeent tne Initial amount pLaseosed by P and q the 

Initial amcunt pf.aseseed oy Q.  We define 

(1)  f(p,q) - the probability that F survives Q when P starts with 

p, Q with q and both sides use optimal play. 

Games ol this variety are aptly called "games of survival", cl" L?j , 

$^1.  üames oi   Llurvl vai - M.itiiem ttl cal P'urrnjiatlon 

Since F wins what Q loses, and vice versa, the total quantity 

of resources In the game remains cons ant, and equal to pn ♦■ q- ■ N, 

the Initial total, to specify the state  f the game It Is sufficient 

then tu state tne amount of resources possessed by P. 

We replace f(p,q) by the function of one variable f(p).  Let 

ua now derive a functional equation fcr f(p).  Enumerating the 

possible outcomes of one stage of play, we see that 

(i)   f(p) - >       V/^ij)   ' 

wnere x - (x»,xa,•••,xMj and y - (yi.y» yN) are the probability 

distributions of P and Q determining the Initial play. 

Since P plays to maximize f(p) and Q to minimize f(p), we 

obtain the equation 

N 
(2)  I (p) - Max Mln >'    x y .1 {[ **.  .) 

x  y  1 , J -1 

N 
Mln Max 
y  x 

ij 

V~  x.y .f (p^-a. . 
rrj-i     J 
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Thla equation Is vail.l for 0<]^<N. We also have 

(5)  f(p) - 1.    P > N 

f(p) - 0,    p < 0. 

*f> .     Approximate   So Uttion 

A  solution of   (2)   yields  f(pj  and  thua  the  vector x(p),   y(p), 

the  probability  distributions  determining  the  Initial  play.     We 

wish  tc)  determine approximate  values  for x(j:)    md  y(p)  urnler  cer- 

tain assumptions concerning  the  sequence  of  pay—(ffs,   (a..). 

We  assume   that  no  single  play creates  any appreclabl»   change 

In  the  state  of  the game,   which  is to  say  that  a. .   Is small  com- 

pared   to  p. 

We  then write 

(Ij     f(p>a1 J   -  r(p)   f a^r'Cp). 

Then   {1.2)   takes  the   form 

M,N 
{:>)     f(p)   -  Max  Mln   ^ y;     _   X^^fCp)   >  a^f' (p))  ] 

x      y        i»J" A 

M.N 
* Mir.  Max   [5       ^   x^   (f(p)   ♦  a1Jf

,(p))  ^     , 
y      x        *■ > o*** 

ur 

(?)     0 
M,N 

- Max Mln   Zr^p)  X ai <xly 1 ^ 
x       y TTj-1       J 

^ Mln  M^x   [ l-' (pi 
y      x 
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Let  ua n^w asaume fartner tn^t, as la trie In all reailatlc altua- 

tluna, It definitely pays P to have a larger Initial quantity of 

reBourcea, tnat Is to say r'(p) > 0 for all p. 

Tnen (3) is replaced by 

M N 
(4)  0 * Max Mln [ jj"  a1 ^y , ] 

*, J ■ l x   y        .,   in'j 

»Min «ax [^a^yj: 

Tne  meaning  of  this  equation   Is  that   for  l.irge  p,   with a 

large number  of  piays  remaining  until  the  end  of   the  game,   the  play 

Is approximately   the  same  as  that  employed   In  tr.e   single-stage  pro- 

cess  where  both players  wish merely   t'j maximize   the  expected  return 

from one play. 

This  approximate  solution  has  precisely  the  same  structure 

as  that  given  fcr  the one—person  process  In   ^ . 

The  Impcrtant   feature  of   (4)   la   that  we  obtain  tne  same 

approximate  equation  regardless  of   tne  significance  of  f(p).     Con- 

sequently,   even  In situations  where  f(p)   Is not   completely deter- 

mlnej,   as  :'req'jentl>  occur«   !n  realistic  sltuatlcn»,   we  know  that 

we possess  a  go^d  approximation   tu  optimal  piay. 

i7.     Non-Zero   Sum  G-mes - Games  of  Survival 

Let  us  now  turn  to  a  alscusslon of  the more   general   situation 

where  b. ,  f -ix. ,.     Here   there  Is  no   tneory  for tne  determination 
1J 1J 

of optimal  piny  In   -.   single-stage  process.     Consequently,  we  shall 
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turn Immediately to the dlacuoslon of multi-stage proceaaea.  We 

aaaume once more that both playera strive to ruin the other and 

continue the game until tnla occurs. 

Let p be tne Initial amount poaaessed by P and q the amount 

possessed by Q, and Introduce the function defined by (4.1). 

(1) 

This function satisfies the functional equation 

(a)  f (p,q) - Max Mln V   x.y.f (p > a. .. q ■«• b. .) 
x   y ITj-l  l J       J       J 

Mln Max 
y  x 

MjN 

^J.J xlyJf(p ^ alJ'q ^ bi^ P»q>0, 

(b)  f(p,q) 1,    p > 0,    q < 0 

0,    p < 0,    q > 0 

1/2,    p - q - 0  . 

So.     Approximate Solution 

Let us assume that a. . and b. . are both negative, so that 

we are dealing with an attrition procesa, and that a^. and b^ . are 

small compared to p and q. 

We write 

(1)  f(P>a1J, q+t^j) - f(p»q) ♦ a^fp + b1Jfq  . 

I 

Then (7.1a) yields 

N M,N 
(2)  ü ^ Max Mln [ fp JT ^  a^x^j * fq ^^ b^x^j 

N N 
- Mln Max 

y  x 
Civ^J.1

aiJx'yj + r*f:J.i
biJxiyjj 
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As  before  we  assume mat  f    > C,   f    < 0.     Since I a. ,x.y,, 

i bl ]xiy ]  are  bctr'  negative.   (2)   yields 

(3)     f M,N M,N 

q        x      y        rTj-l    1J  1  J      TTj-l    1J  1   J 

M,N M,N 

»mnMax   ^ Wj / ^ WJ J 

The  Interpretation of  this equation  la  that  b. th  aides  {.lay 

approximately  so  as   to maximize  or minimize  reapectlveiy  tne  ratio 

M,N M,N 
(M    R(x,y)   - ^^  b^x^j /  ^^ a^x^j 

That, linder ehe assumptions on a. . and b. ,, 
1J     lj 

(5) Max Mln R(x,y) - Mln Max R(x,y) 
x  y y  x 

Is a theorem also due to Vjn Neumann, and recently established In 

a different manner by Shapley, Jj. 

^9.  A Rationale f c r Non-Zero Sam Games 

The importance of the above result resides In the fact that 

It furnishes us a motive Vor  using R(x,y) as a universal pay-off 

function for non-zero sum games.  Whether or not it Is to be 

accepted in any particular situation will depend on other proper- 

ties of the game. 

x 
"V 
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